Thymic function is maintained during Salmonella-induced atrophy and recovery.
نویسندگان
چکیده
Thymic atrophy is a frequent consequence of infection with bacteria, viruses, and parasites and is considered a common virulence trait between pathogens. Multiple reasons have been proposed to explain this atrophy, including premature egress of immature thymocytes, increased apoptosis, or thymic shutdown to prevent tolerance to the pathogen from developing. The severe loss in thymic cell number can reflect an equally dramatic reduction in thymic output, potentially reducing peripheral T cell numbers. In this study, we examine the relationship between systemic Salmonella infection and thymic function. During infection, naive T cell numbers in peripheral lymphoid organs increase. Nevertheless, this occurs despite a pronounced thymic atrophy caused by viable bacteria, with a peak 50-fold reduction in thymocyte numbers. Thymic atrophy is not dependent upon homeostatic feedback from peripheral T cells or on regulation of endogenous glucocorticoids, as demonstrated by infection of genetically altered mice. Once bacterial numbers fall, thymocyte numbers recover, and this is associated with increases in the proportion and proliferation of early thymic progenitors. During atrophy, thymic T cell maturation is maintained, and single-joint TCR rearrangement excision circle analysis reveals there is only a modest fall in recent CD4(+) thymic emigrants in secondary lymphoid tissues. Thus, thymic atrophy does not necessarily result in a matching dysfunctional T cell output, and thymic homeostasis can constantly adjust to systemic infection to ensure that naive T cell output is maintained.
منابع مشابه
Bacterial clearance reverses a skewed T-cell repertoire induced by Salmonella infection
Salmonella typhimurium invades the spleen, liver, and peripheral lymph nodes and has recently been detected in the bone marrow and thymus, resulting in a reduced thymic size and a decline in the total number of thymic cells. A specific deletion of the double-positive cell subset has been characterized, yet the export of mature T cells to the periphery remains normal. We analyzed Salmonella path...
متن کاملInterleukin-21 Accelerates Thymic Recovery from Glucocorticoïd-Induced Atrophy
Both physiological and psychological stress cause thymic atrophy via glucocorticoïd (GC)-dependent apoptosis of double-positive (DP) thymocytes. Given the pervasiveness of stress, GC-induced thymic atrophy is arguably the most common type of acquired immunodeficiency. We recently reported that interleukin-21 (IL-21) has a unique ability to expand the small subset of DP thymocytes (CD69(+)) whic...
متن کاملCytokines, leptin, and stress-induced thymic atrophy.
Thymopoiesis is essential for development and maintenance of a robust and healthy immune system. Acute thymic atrophy is a complication of many infections, environmental stressors, clinical preparative regimens, and cancer treatments used today. This undesirable sequela can decrease host ability to reconstitute the peripheral T cell repertoire and respond to new antigens. Currently, there are n...
متن کاملMolecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy.
Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ-activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a h...
متن کاملAcute Endotoxin-Induced Thymic Atrophy Is Characterized By Intrathymic Inflammatory and Wound Healing Responses
BACKGROUND Productive thymopoiesis is essential for a robust and healthy immune system. Thymus unfortunately is acutely sensitive to stress resulting in involution and decreased T cell production. Thymic involution is a complication of many clinical settings, including infection, malnutrition, starvation, and irradiation or immunosuppressive therapies. Systemic rises in glucocorticoids and infl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 189 9 شماره
صفحات -
تاریخ انتشار 2012